Bộ môn toán hình học luôn mang lại cho chúng ta cảm giác cực kỳ thú vị. Tuy nhiên việc ghi nhớ các công thức hay phân biệt tính chất cũng khiến nhiều học sinh ngán ngẩm. Đừng quá lo lắng nhé! Toppy sẽ đồng hành cùng bạn trong từng bài học. Hôm nay, chúng ta hãy cùng ôn tập các kiến thức quan trọng của tính chất ba đường trung trực của tam giác thôi nào!
Contents
- 1 Đường trung trực của tam giác là gì?
- 2 Tính chất ba đường trung trực của tam giác
- 3 Một số bài tập trắc nghiệm ứng dụng tính chất ba đường trung trực của tam giác
- 4 Một số bài tập tự luận ứng dụng tính chất ba đường trung trực của tam giác
- 5 Giải pháp toàn diện giúp con đạt điểm 9-10 dễ dàng cùng Toppy
Đường trung trực của tam giác là gì?
- Định nghĩa về đường trung trực của tam giác được phát biểu như sau: “Trong một tam giác, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác đó.”
Chẳng hạn như trong tam giác ABC: a là đường trung trực ứng với cạnh BC, b là đường trung trực ứng với cạnh AC và c là đường trung trực ứng với cạnh AB.
- Trong mỗi tam giác đều có ba đường trung trực.
- Tính chất của đường trung trực: Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này.
Tính chất ba đường trung trực của tam giác
Tính chất ba đường trung trực của tam giác cụ thể như sau:
- Bất kỳ tam giác nào cũng được sở hữu 3 đường trung trực, tính chất chung của 3 đường này như sau: Cùng đi qua một điểm, điểm này cách đều ba đỉnh của tam giác đó.
Chẳng hạn như: O là giao điểm ba đường trung trực của tam giác ABC, suy ra ta có OA = OB = OC
- Lưu ý: nếu một đường tròn lấy giao điểm của 3 đường trung trực làm tâm và đi qua 3 đỉnh của tam giác, thì đường tròn đó được gọi là đường tròn ngoại tiếp tam giác.
Chẳng hạn như: O là giao điểm của 3 đường trung trực tam giác ABC và một đường tròn tâm O đi qua ba đỉnh A, B, C; thì đường tròn đó là đường tròn ngoại tiếp tam giác ABC.
Để hiểu rõ hơn về tính chất đường trung trực của một tam giác, có thể tìm đọc thêm 1 số bài viết khác của Toppy.
>> Xem thêm: Tính chất đường trung trực của một đoạn thẳng
Một số bài tập trắc nghiệm ứng dụng tính chất ba đường trung trực của tam giác
Bài tập 1
Cho ΔABC có hai đường cao BD và CE, gọi M là trung điểm của BC. Em hãy chọn câu sai:
- BM = MC
- ME = MD
- DM = MB
- M không thuộc đường trung trực của cạnh DE
- Ta có: M là trung điểm của BC, suy ra theo tính chất trung điểm thì BM = MC,loại đáp án A.
- Xét ΔBCE có M là trung điểm của BC. Suy ra EM chính là trung tuyến
Ta có lý thuyết: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh đó.⇒EM = BC/2 (1)
- Tiếp tục xét ΔBCD có M là trung điểm của BC. Suy ra DM cũng là trung tuyến
⇒ DM = MB = BC/2 (2), nên loại đáp án C
Từ (1) và (2) suy ra: EM = DM ⇒ M thuộc đường trung trực của DE, loại được đáp án D, chọn đáp án B.
Bài tập 2
Cho ΔABC có AC > AB, tại AC lấy điểm E sao cho CE = AB, O là giao điểm của các đường trung trực của BE và AC. Chọn đáp án đúng:
- ΔABO = ΔCOE
- ΔBOA = ΔCOE
- ΔAOB = ΔCOE
- ΔABO = ΔCEO
Xét tam giác ΔAOB và ΔCOE”
- O thuộc đường trung trực của AC⇒ OA = OC
- O thuộc đường trung trực của BE⇒ OB = OE
- Theo giả thiết: AB = CE
Do đó ΔAOB = ΔCOE (cạnh-cạnh-cạnh)
Chọn đáp án C
Bài tập 3
Cho ΔABC vuông tại A có đường cao AH, tại cạnh AC lấy điểm K sao cho AK = AH, KD ⊥ AC (D ∈ BC). Chọn câu đúng
- ΔAHD = ΔAKD
- AD là đường trung trực của HK
- AD là tia phân giác của góc HAK
- Cả A, B, C đều đúng
Xét tam giác vuông AHD và AKD có:
- AH = AK (giả thiết)
- AD chung
Suy ra ΔAHD = ΔAKD (cạnh huyền-cạnh góc vuông) nên câu A đúng
Ta có: HD = DK; ∠HAD = ∠DAK.
Suy ra AD là tia phân giác của góc HAK, nên câu C đúng
Ta lại có: AH = AK (gỉa thiết) và HA = DK (cmt). Suy ra AD là đường trung trực của đoạn thẳng HK nên B đúng.
Vậy A, B, C đều đúng. Chọn đáp án D
Một số bài tập tự luận ứng dụng tính chất ba đường trung trực của tam giác
Bài tập 1
Cho tam giác ABC, AK là đường phân giác của góc A, giao điểm đường phân giác của tam giác ABK trùng với giao điểm ba đường trung trực của tam giác ABC. Yêu cầu: Tính số đo các góc của tam giác ABC.
Bài giải:
Gọi O là giao điểm của 3 đường phân giác của tam giác ABC, O là giao điểm của ba đường trung trực của tam giác ABC (giả thiết)
Suy ra:
- OA = OB = OC
- Các tam giác AOB, AOC, BOC là các tam giác đều.
AK là đường phân giác của góc BAC (giả thiết). Suy ra: nếu ∠KAB = 2x thì ∠BAC = 4x
Ta có: ΔAOB = ΔCOB. Suy ra: AB = CB
Vậy tam giác ABC cân tại đỉnh B
⇒ ∠BAC = ∠BCA
Khi đó ta có:
2x + 4x + 4x = 180° ⇒ 10x = 180° ⇒ x =18°
Vậy có thể kết luận số đo các góc của tam giác ABC là: ∠A = ∠C = 72°, ∠B = 18°
Bài tập 2
Cho tam giác đều ABC, tại ba cạnh AB, BC và CA lấy các điểm theo thứ tự M, N, P sao cho AM = BN = CP., O là giao điểm của ba đường trung trực. Yêu cầu: Chứng minh O cũng là giao điểm ba đường trung trực của tam giác MNP.
Bài giải:
O là giao điểm của ba đường trung trực của tam giác ABC( giả thiết). Suy ra: OA = OB = OC⇒ Các tam giác AOM, BON, COP có:
AM = BN = CP (gt)
Do đó: ΔAOM = ΔBON = ΔCOP (cạnh-góc-cạnh)
⇒ OM = ON = OP
Hay nói cách khác: O là giao điểm của ba đường trung trực tam giác MNP
Trên đây là một số kiến thức lý thuyết và bài tập về tính chất ba đường trung trực của tam giác mà chúng tôi muốn chia sẻ đến các bạn. Hy vọng các bạn đã có những phút giây học tập thật bổ ích với Toppy!
Xem ngay:
- Đường trung bình của hình thang và các dạng bài tập
- Tam giác cân và kiến thức cơ bản – Toán lớp 7 là chuyện nhỏ
Giải pháp toàn diện giúp con đạt điểm 9-10 dễ dàng cùng Toppy
Với mục tiêu lấy học sinh làm trung tâm, Toppy chú trọng việc xây dựng cho học sinh một lộ trình học tập cá nhân, giúp học sinh nắm vững căn bản và tiếp cận kiến thức nâng cao nhờ hệ thống nhắc học, thư viện bài tập và đề thi chuẩn khung năng lực từ 9 lên 10.
Kho học liệu khổng lồ
Kho video bài giảng, nội dung minh hoạ sinh động, dễ hiểu, gắn kết học sinh vào hoạt động tự học. Thư viên bài tập, đề thi phong phú, bài tập tự luyện phân cấp nhiều trình độ.Tự luyện – tự chữa bài giúp tăng hiệu quả và rút ngắn thời gian học. Kết hợp phòng thi ảo (Mock Test) có giám thị thật để chuẩn bị sẵn sàng và tháo gỡ nỗi lo về bài thi IELTS.
Nền tảng học tập thông minh, không giới hạn, cam kết hiệu quả
Chỉ cần điện thoại hoặc máy tính/laptop là bạn có thể học bất cứ lúc nào, bất cứ nơi đâu. 100% học viên trải nghiệm tự học cùng TOPPY đều đạt kết quả như mong muốn. Các kỹ năng cần tập trung đều được cải thiện đạt hiệu quả cao. Học lại miễn phí tới khi đạt!
Tự động thiết lập lộ trình học tập tối ưu nhất
Lộ trình học tập cá nhân hóa cho mỗi học viên dựa trên bài kiểm tra đầu vào, hành vi học tập, kết quả luyện tập (tốc độ, điểm số) trên từng đơn vị kiến thức; từ đó tập trung vào các kỹ năng còn yếu và những phần kiến thức học viên chưa nắm vững.
Trợ lý ảo và Cố vấn học tập Online đồng hành hỗ trợ xuyên suốt quá trình học tập
Kết hợp với ứng dụng AI nhắc học, đánh giá học tập thông minh, chi tiết và đội ngũ hỗ trợ thắc mắc 24/7, giúp kèm cặp và động viên học sinh trong suốt quá trình học, tạo sự yên tâm giao phó cho phụ huynh.