Mobo
  • Home
  • Hướng Dẫn
  • Trend 24h
  • Tử Vi 24h
No Result
View All Result
Mobo
  • Home
  • Hướng Dẫn
  • Trend 24h
  • Tử Vi 24h
No Result
View All Result
Mobo
No Result
View All Result

Công thức cách tính đường cao trong tam giác đều – kèm lời giải

by admin
5 Tháng Chín, 2022
in Trend 24h
0
Share on FacebookShare on Twitter

Công thức cách tính đường cao trong tam giác đều – kèm lời giải là một trong những dạng công thức cực kỳ quan trọng trong toàn hình học ở cấp 2. Đây cũng là một trong những công thức góp mặt khá nhiều trong đề thi nên luôn được qua tâm của các bạn học sinh. Chính vì thế, cùng nhà tớ giải đáp bài toán khó ngay sau bài viết này nhé!

Contents

  • 1 Tam giác đều
    • 1.1 BẠN QUAN TÂM
    • 1.2 Top các app giải toán cấp 2 THCS lớp 6, 7, 8, 9 TỐT nhất 2023
    • 1.3 “Kỷ Niệm” trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt
    • 1.4 Tính chất của tam giác đều
    • 1.5 Dấu hiệu nhận biết tam giác đều
  • 2 Công thức cách tính đường cao trong tam giác đều
    • 2.1 Tính đường cao tam giác đều dựa vào công thức Heron
    • 2.2 Tính đường cao tam giác đều dựa vào công thức tính tam giác cân
  • 3 Áp dụng công thức tính chiều cao tam giác đều

Tam giác đều

Trong hình học, tam giác đều có định nghĩa như sau: là tam giác có 3 cạnh bằng nhau tương đương 3 góc bằng nhau và bằng 60 độ. Trong đó, nó là đa giác đều với số cạnh bằng 3 nên gọi là tam giác đều (tam là biểu tượng cho con số 3).

BẠN QUAN TÂM

Top các app giải toán cấp 2 THCS lớp 6, 7, 8, 9 TỐT nhất 2023

5 Tháng Hai, 2023

“Kỷ Niệm” trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt

5 Tháng Hai, 2023

Tính chất của tam giác đều

Tam giác đều bao gồm 5 tính chất như sau:

+Trong tam giác đều, mỗi góc đều bằng 60 độ

+Nếu một tam giác có 3 góc bằng nhau thì tam giác đó hiển nhiên là tam giác đều

+Trong một tam giác cân, có một góc 60 độ thì nó là tam giác đều

+Trong một tam giác đều, đương cao vừa là đương trung tuyến vừa là phân giác của tam giác đó

+Giả sử, trong tam giác ABC, có đường cáo D xuất phát từ A, thì AD vừa là đường cao, vưa là trung tuyến vừa là đường phân giác của góc A.

Đây là 5 tính chất vô cùng quan trọng trong các bài tập về hình học, chứng mình hình học, hình học không gian. Các bạn lưu ý nhớ rõ để áp dụng nhé!

Dấu hiệu nhận biết tam giác đều

Trong 5 tính chất thì 4 4 dấu hiệu nhận biệt như thế nào là một tam giác đều, cụ thể như sau:

+Tam giác có 3 cạnh bằng nhau là tam giác đều

+Tam giác có 3 góc bằng nhau là tam giác đều

+Tam giác cân có 1 góc bằng 60 độ là tam giác đều

+Tam giác có 2 góc bằng 60 độ là tam giác đều

Công thức cách tính đường cao trong tam giác đều

Có 2 công thức tính đường cao trong tam giác đều đó là: tính đưỡng cao tam giác đều dựa vào công thưc Heron và tính đường cao trong tam giác đều dựa vào công thức tính đường cao trong tam giác cân. Cụ thể công thức và lời giải được viết tiếp trong phần sau đây bạn nhé!

Tính đường cao tam giác đều dựa vào công thức Heron

Công thức được soạn sẵn nếu đã nhận biết được tam giác này là tam giác đêu, đường cao được tính dựa trên công thức Heron như sau:

Trong đó:

+a, b, c được gọi là độ dài của 3 cạnh trong tam giác

+p là nửa chu vi của tam giác đều được tính theo công thức sau: p= (a+b+c)/2

+ha là đường cao kẻ từ đỉnh A, h là chiều dài chung của 3 đường cao trong tam giác đều.

Với công thức này bạn sẽ dễ dnagf áp dụng vào các bài tập thực tiễn trên lớp học và các bài thi. Mọi người nên lưu ý lưu lại và học thuộc để áp dựng coogn thứ Heron này nhé!

Tính đường cao tam giác đều dựa vào công thức tính tam giác cân

Công thức được soạn sẵn dựa trên công thức tính đưỡng cao tam giác cân, đường cao được tính dựa trên công thức cụ thể như sau:

Xét tam giác đều ABC có cạnh bằng a=AB=AC=BC, có đường cao AH từ đỉnh A cắt BC tại H. Do tam giác ABC là tam giác đều suy ra ABC hiển nhiên là tam giác cân nên đường cao AH cũng là đường trung tuyến của ABC. Vì thế, chúng ta có công thức:

BH = HC = BC/2 = a/2.

Xét tam vuông ABH vuông tại H, ta có:

-AB2 = AH2 + BH2 (tính chất tam giác vuông)

-AH2 = AB2 – BH2 = a2 – (a/2)2 = 3(a2/4)

=> AH = h = (acăn3)/2

Áp dụng công thức tính chiều cao tam giác đều

Đề bài: cho tam giác đều ABC có cạnh bằng a=AB=AC=BC= 6. Kẻ đương cao AH, cắt BC tại H. Tính chiều cao AH theo hai cách.

Bài giải:

Xét tam giác đều ABC ta có:

Trên đây là toàn bộ những thông tin liên quan đến Công thức cách tính đường cao trong tam giác đều – kèm lời giải dành đến bạn đọc nhà tớ. Một công thức quan trọng trong nền tảng giải toán hình học. Chính vì thế sau bài viết hi vọng các bạn đã áp dựng được công thức trong bài giải của mình nha. Cảm ơn đã theo dõi hết bài viết.

BÀI LIÊN QUAN

Top các app giải toán cấp 2 THCS lớp 6, 7, 8, 9 TỐT nhất 2023

by admin
5 Tháng Hai, 2023
0

Qua bài viết này mobo.vn xin chia sẻ với các bạn thông tin và kiến thức về ứng dụng giải...

“Kỷ Niệm” trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt

by admin
5 Tháng Hai, 2023
0

Duới đây là các thông tin và kiến thức về kỷ niệm tiếng anh là gì hot nhất hiện nay...

Cơ bản về lớp Vector | How Kteam – Howkteam.com

by admin
5 Tháng Hai, 2023
0

Dưới đây là danh sách vector c++ là gì hot nhất hiện nay được bình chọn bởi người dùng

Giờ Tý là mấy giờ? Cách tính 5 canh trong 1 ngày – Tiệm rửa xe uy tín

by admin
5 Tháng Hai, 2023
0

Duới đây là các thông tin và kiến thức về canh ba là mấy giờ hay nhất được tổng hợp...

Bài tiếp theo

Ờ mây zing gút chóp là gì mà ai cũng biết đến?

Facebook Twitter Instagram

VỀ CHÚNG TÔI

CHÍNH SÁCH

  • Giới thiệu
  • Điều khoản
  • Chính sách bảo mật

BÀI MỚI NHẤT

  • Khôi phục dữ liệu đã xóa với Recover My Files – Download.vn
  • #1 Cách Lập Báo Cáo Lưu Chuyển Tiền Tệ Mới Nhất Hiện Nay
  • Top các app giải toán cấp 2 THCS lớp 6, 7, 8, 9 TỐT nhất 2023
  • “Kỷ Niệm” trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt
  • Cơ bản về lớp Vector | How Kteam – Howkteam.com

© 2022 MOBO.VN

No Result
View All Result
  • Landing Page
  • Buy JNews
  • Support Forum
  • Pre-sale Question
  • Contact Us

© 2022 MOBO.VN